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Quantum effects after decoherence in a quenched phase transition
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We study a quantum mechanical toy model that mimics some features of a quenched phase transition. Both
by virtue of a time-dependent Hamiltonian or by changing the temperature of the bath we are able to show that
even after classicalization has been reached, the system may display quantum behavior again. We explain this
behavior in terms of simple nonlinear analysis and estimate relevant time scales that match the results of
numerical simulations of the master equation. This opens new possibilities both in the study of quantum effects
in nonequilibrium phase transitions and in general time-dependent problems where quantum effects may be
relevant even after decoherence has been completed.
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[. INTRODUCTION analytical analysis. Section IV contains similar results this
time taking as initial condition a single-Gaussian state cen-
The emergence of classical behavior in quantum systentered at the global minimum. In Sec. V we discuss the time-
is a topic of great interest for both conceptual and experidependent evolution of the linear entropy in the model, illus-
mental reason§l]. It is well established by now that the trating the loss of purity of the system and clarifying the
interaction between a quantum System and an external en\mhySK:al nature Of the I‘esultS preV|OUS|y Obta|ned. Section VI
ronment can lead to its classicalization; decoherence and t@ntains final remarks and the main conclusions of the paper.
occurrence of classical correlations being the main features
of this procesgfor a recent overview see]). Il. THE MODEL
A seemingly unrelated physical problem where the inter- ) o ] )
action between a main system and its surrounding environ- e Wwill start by considering a quantum anharmonic oscil-
ment is central in determining the dynamics of a phase tran/&tor coupled to an environment composed of an infinite set
sition. Usually, a change in the properties of the system oPf hgrmqnlc oscillators. The total classical action for the sys-
the bath, forces the system to change phase via an od€™m IS given by
equilibrium evolution. It is natural to ask what role decoher-
ence plays in the phase transition and conversely, how the ~ SDX.0n]=S[X]+ S[An]+ Sl X, 0]

time-dependent nature of the process affects the classicaliza- t 1 [ A
tion of the system. —f ds[—M xX2—Q3(t)x?——x*
In this paper we explore two concurrent avenues. We look o [2 4

at what may happen with the decoherence process when we 1
have a tlme_-de_pen_dent settl(‘@ far this problem has been + 2 Emn(qﬁ_ wﬁQﬁ)
mostly studied in kicked or driven systems; see for example n
Refs.[3] and[4]). This is a very general question, and we
use this to guide us a simple toy model that naturally in-wherex and g, are the coordinates of the particle and the
cludes time-dependent features. This model also happens @scillators respectively. The quantum anharmonic oscillator
mimic some properties of a nonequilibrium second-ordeiis coupled linearly to each oscillator in the bath with strength
phase transition, giving us some clues as to what may happésy, - This coupling leads to a simple quantum Brownian mo-
in a realistic case. tion model commonly used in the study of the quantum-to-
The paper is organized as follows. In the next section welassical transitiorf5,6]. Tracing over the degrees of free-
introduce our model and review the physical role of the dif-dom of the environment one obtains a master equation for
ferent terms in the relevant evolution equations. We describthe reduced density matrix of the system. From this one can
how the “phase transition” is implemented and discuss esti-derive the following evolution equation for the correspond-
mates for the different time-scales involved. In Sec. Ill weing Wigner function[2]:
present the results of a series of numerical simulations for the
evolution of an initial configuration of two delocalized
Gaussian wave packets. This system is subject to a sudden
guench via an instantaneous change in the frequency sign.
Both the cases where the temperature of the environment is +D (1) 35 W, — (1) I, W, 2
kept fixed and allowed to change at the quench time are
studied. We support the numerical results with a detailedvhere

—; CoXly, (D)

. A
Wi(X,P,1) ={H syse Wit pa— 7 XdpppWe+ 27(1) dp( P W)
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1 [t IIl. DELOCALIZED INITIAL STATES: QUANTUM
y(t)=— SMQ f dt’sinh(Qot") n(t"), EFFECTS AFTER DECOHERENCE
0JO

We solve Eq(2) numerically using a fourth-order spectral
¢ algorithm (numerical checks included carrying out simula-
D(t):f dt’ cosiQet’ ) v(t'), (3) tions at different spatial and temporal resolutipi¥e chose
0 A=0.1,D=0.3, and sef)3= 1.0 initially. In order to under-
stand the effects of the change in the mass term on the de-

1 to , ) coherence process we look first at the evolution of the quan-
f(t)=— M_Qofodt sinh(Qot") n(t"), tum superposition of two Gaussian wave packets
W (X,t=0)=W1(X)+W¥y(x), (4)

y(t) is the dissipation coefficienD(t) andf(t) are the dif-
fusion coefficientsg(t) and v(t), the dissipation and noise where
kernels, are given respectively by

(xFLg)?

‘Pllz(x)zN(t)ex;{—T exp(£iPgx). (5

77(t)=f dol(w)sinwt,
0 The initial W, consists of two Gaussian peaké 2 separated
by a distance B, (we choseL,=2.0 andP,=0) and an

© Bw interference termW,™. This quantum initial state has been

v(t)= fo dol(w)coth—-coswt, widely used in the literature to illustrate decoherence phe-
nomena(see[2] or [6] for examplg and its evolution will

] ] ) make clear the physical nature of the effects we will observe.

wherel () is the spectral density of the environment. In the next section we will choose a more realistic initial

The first term on the right-hand side of E) is the  congition in terms of the dynamics of a phase transition.
Poisson bracket, corresponding to the usual classical evolu- |y order to visualize deviations from classicality effec-

tion. The second term includes the quantum correctio®  +jyely, we define the auxiliary quantitg],
have sefi=1). The last three terms describe dissipation and
diffusion effects due to coupling to the environment. In order
to simplify the problem, we consider a high-temperature F(t):f dxdf|W]—W]. (6)
ohmic [ (w)~ ] environment. In this approximation the
coefficients in Eq(2) become constants:(t)=vy,, f~1/T, = When the Wigner distribution is positive and possibly iden-
and D=2y,kgT. The normal diffusion coefficienD is the tifiable with a classical probability distributiod; is zero.
term responsible for decoherence effects and at high tenHowever, ifI" is positiveW, must have negative values due
peratures is much larger than andf. Therefore in Eq(2),  to quantum interference terms. We can thus use positivity of
we may neglect the dissipation and the anomalous diffusiothe T' function as sufficient condition for nonclassical
terms against the normal diffusion. It is important to notebehavior.
that the high-temperature approximation is well defined only
after a time scale of the order of k{T)~ y,/D (with 7
=1). The relevant period of evolution for our systems takes ) ) ) )
place at times comfortably larger than this time scale, safely Ve start the simulation by evolviny/, for some time
in the validity regime of the approximation. with the positive mass squared potential, in the presence of
Time dependence will be introduced in the Hamiltonianthe bath. During this period, the initial quantum interference
by imposing a sudden change of sign(bﬁ (typical quench terms are quickly damped by the enwronment_. Thus, for an
This mass term is taken to be positive initially, the original €1y timetp,, the system decoheres and one is able to dis-
symmetry being broken b§2? becoming negative. On a sec- tinguish two classical probability distributions corresponding
ond stage we will also consider the case where the temper# the two initial Gaussian peaks evolving over phase space.
ture of the environmen changes with time. The change in Suddenly, at=t. we change the frequency of the system
the potential leads to the formation of degenerate minimdrom the initial positive valueQ to a final — Q3. The evo-
mimicking the breaking of symmetry in a second-orderlution picture changes dramatically when the frequency be-
phase transition. In a realistic model one should address thizomes negative and instabilities are introduced in the system.
problem in the context of quantum field thedi]. Thisis an  In Fig. 1 we can see the behaviorlof Starting from a large
extremely difficult problem since nonperturbative and non-initial value,I" quickly tends to zero as quantum interference
Gaussian effects are relevant in the dynamical evolution oferms vanish and the system becomes classical. The potential
the order parameter undergoing the transition and clearly nus quenched at. and shortly after the system displays once
merical simulations are out of the question. We trust that anyagain quantum behavior for a period of time.
nontrivial type of behavior that may be a feature of our In order to understand this process we go back to early
simple quantum mechanical model will also be pregantl  times, before the quench. Frdms 0 up tot=t, the diffusion
likely more strongly spin the infinite dimensional case. coefficient D causes the system to decohere, destroying

A. Mass quench at constant temperature
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FIG. 1. Evolution ofl" when the potential changes its frequency  FIG. 2. Evolution ofl” when the potential changes its frequency
from Q(z,: 1—--1,D=0.3, and\=0.1. from QS: 1——1. A changing in the environment temperature is
considered =0.3—0.1 in curve(a) andD =0.3—0.003 in(b).
guantum interference terms in a time that can be estimated to

be of the order oty ~1/(4L2D), where 2, is the iniial ~ POSitive. We evaluatex~3.2 and numerically estimate

space separation between the peaks of the Gaussian Wa%(IC)sz' We also assume the Lyapunov coefiicient to be

packets(see[2]). The normal diffusion term is dominant ?venzgy the value corresponding to a linear potential
with respect to the quantum corrections, and thereafter thg 2¢}o=2.0. Therefore, the time in which quantum effects

evolution is given essentially by the classical Fokker-Plancitart being relevant is given by, ~3.8. This is in good
flow. For our choice of initial conditions we hatg ~0.2. ~ @greement with the time at which the Wigner function dis-
1

eplays negative values once again, as can be seen in Fig. 1.
From this point onwards quantum contributions increase,

o . . X their growth being limited by diffusion effects that limit the

have checked that this is compatible with the decay o squeezing of the Wigner function. The bound on the width of

the initial period of evolution in our simulatiopsAs soon as o - .
the frequency becomes negative, an unstable point forms jﬂﬁaﬁ’:iﬁse I:e%lgﬁg zygéc:hefle?r{ éxe ['[|2ng :Zzlgssvr'zstgu?:e' that
the center of the phase space with associated stable and un- '

n . . )
stable directions. These are characterized by Lyapunov coefluantum effects become maximal at a certgjg, (when in
ficients A with negative and positive real parts respectively

the numerical simulatiod” reaches its maximumwith a
[9] corresponding pack widthr,(ty,.) and that decoherence is

i effective after the time when squeezing becomes of the order
rg)_f the limiting value. This implies

This is roughly the time quantum interference terms in th
Wigner function should fall to ¥ of their initial value(we

This type of dynamics gives rise to the possibility of
squeezing along the stable direction. The exponential stretc
ing of the Gaussian packets in one of the directions due to t- =t +A ln t 8
the hyperbolic point is compensated by an exponential Dy max Lop(tmadl ocl, ®
squeezing. This will lead to a growth of gradients in they i defines the decoherence time after the critical time.
Wigner function that will make the quantum term in Eg)

sing op(tma)~4 ando.=0.5 we obtainty ~6.3, in rea-
comparable to the others. As a consequence the system will . . L2 .
be forced to explore the quantum regime again. In a moréonable agreement with the simulation time for which quan-

quantitative fashion we have that the time dependence of th&™M €ffects are exponentially suppresseee Fig. 1

package width in the direction of the momenta after the . '

quench is given byap(t)=crp(tc)exp[—A(t—tc)], where B. Mass quench with changing temperature

ap(te) is the corresponding width at the time in whi€h, The pattern of classical-quantum-classical behavior found
changes sign. From this we can estimateptuerivatives of  jn the above system with explicit time dependence is ob-
the Wigner function to grow asjyW,xo,"(t)exdnA(t  served in more generic situations. As a second example we
—t.) JW,. Clearly higher-order derivatives grow faster and athave solved Eq(2) allowing the bath temperature to de-
some point the quantum term with its third-order derivativecrease simultaneously with the change in sign of the fre-
will be of comparable magnitude to the classical terms in theyuency term. These conditions take us somehow closer to
Poisson bracketéwhich are first ordgr This will happen  what would happen in a true second-order phase transition
(se€e[9]) when the ratioé'SWr/apWr becomes of the order of caused by a temperature quench. As a consequence, the dif-
X2=(3’XV(X)/6’§V(X)~QS/)\ that characterizes the scale of fusion coefficient, proportional t®, goes at. from an initial
nonlinear terms. From this the time at which quantum effectdigh-temperature valuB, up to a final lower valu®; [still

become relevant is estimated to be in the high-temperature regime in order to ensure the validity
. of Eq. (2)]. In Fig. 2 we see the effect of changing the tem-
ty~tet AT In[xop(te)]. (7)  perature with the classical potenti@xcept forD all simu-

lations parameters are the same as in Fjg.The analysis
In the simulation used in our example we chose2.5(later  used in the previous example can be easily reproduced for
than the time when the Wigner function becomes definitehis case. Both the initial decoherence tit@? and the time
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for the reintroduction of the quantum fluctuationsremain = 20
unchanged as they do not depend on the temperature of th 5
environment. The second decoherence ﬁg}ds larger for a

weaker diffusion ternfwe have used;=0.1 in Fig. 2a) 0 N
and D;=0.003 in Fig. 2b)]. We have obtained respectively -s -5
tD2a~6.5. andtD2b~7.4. In the lowest-temperature cdéeg. . o

2(b)] the analytical prediction matches the numerical result R I
poorly.

This is due to the fact that the estimation does not take
into account the oscillations in the rate of decoherence com- *°
ing from different orientations of the interference fringes
when the Wigner function is moving around the unstable
point. As the diffusion coefficient is smaller, the second de- °
coherence time grows and the approximation of the upside- _
down potential is no longer valid. In any case, the analytic
result can still be used as an estimated lower limit for the-°
second decoherence time. We have included it in our analysi:
in order to emphasize how dramatic the quantum effects are
during the quenched transition. 10

It is helpful to look at the Wigner function directly in
order to further clarify, which regions of phase space are
responsible for turningl’ positive. In Figs. 3 we show 0
W(x,p,t) for the quench case corresponding to Figa)2

The four plots in the left column correspond to the deco-
herence period before the quench. The two Gaussian peak_,,
(light spots rotate in phase space around the minimum of the
potential while the negative componer{tiark patcheks of
the Wigner function are cleared away by the environment.
When the potential changésght columr) the wave packets
start spreading and exploring the nonlinear regions of phast s
space giving rise to the dark interference patches. For longe
times decoherence takes over again and the Wigner functiol °
becomes once more positively defined. -5

5

=5

-10

IV. SINGLE INITIAL GAUSSIAN STATE

As a further example we take a single-Gaussian state cen —_

tered at the global minimum of the quartic potential as initial - 5 Stroboscopic phase space for the evolution in Fig. 2
condition. This is a more reasonable initial condition in terms,_k)rizor']ta'I axis corresponds tq vertical axis top. The mediu;n
of a realistic phase transition, mimicking a hlgh—temperaturegray shade on the background corresponds to zero values for the

thermal distribution. It will also allow us to see that the \yigner function, lighter and darker shades, respectively, to positive
above results are not an artifact of the initial state. This initialang negative values af/(x,p).

Wigner function is already classical and so we ignore the
initial evolution period and také,=0. Figure 4 and Fig. 5
show thel” function for the same quenches as befaréh-

out and with temperature change respectielhe initial fails to fit the numerical result. We have included it in our

classical configurationI{=0, for the initial time develops L . .

. . analysis in order to emphasize how dramatic the quantum
gquantum effects as the classical potential and the temperatug Cts are during the quenched transition
change. The relevant time scales are evaluated as before and- g q '
once again, the estimates are in good agreement with the
simulation results. In the constant temperature cagé.
=0)~0.7, which givest,~0.6 (see Fig. 4 We also have
0p(tma)~3.2. ando~0.5 leading tap~ 3.2, which agrees One of the most salient features of the quantum-to-
with the numerical result. classical transition concerns the production of entropy as a

Figure 5 shows the cases where the change in frequency @®nsequence of the entangling interactions between the sys-
followed by a change in the environmental temperaturdgem and the environment. In order to clarify the nature of the
(same coefficients as in the example of Fig.Ror Fig. 5a) postdecoherence quantum effects in the systems simulated
op(tmay~3.3 ando=0.3, and therefore the decoherenceabove we have looked at the corresponding time evolution of

time is tp~3.5. This scale is in good agreement with thethe linear entropy that sets a lower bound on the von Neu-

numerical result. The estimation for Fig(} gives a deco-
herence timeéy~4.5 that agairias in the case of Fig.(B)]

V. LINEAR ENTROPY
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FIG. 4. Evolution ofl" when the potential changes its frequency

from Q(Z):l*)_ 1 for one Gaussian initially centered @t0 (A
=0.1).

mann entropy(see[4]). This is given in terms of the density
matrix by

S(t)=—In{Tr p?(t)]}. 9)

This quantity can be easily obtained from the Wigner
function giving a good measurement of the “loss of purity”
of the system as it interacts with the batee[2,4]). We
found that as expected the entropy increases throughout the FIG. 6. In the top figure, we show the linear entropy for the
whole evolution. The system starts as a pure state and whilgelocalized(solid line) and single-Gaussiafdashed ling initial
interacting with the heat bath it loses coherence and simulstates. In the bottom figure, we have the entropy production rate vs
taneously starts behaving as a classical ensemble. When thime for the same initial conditiongsolid and dashed lines as
potential changes it evolves for sometime as a quanturabove.
mixed system but the original “purity” is never recovered. In . _ .
this sense the decoherence process is irreversible. In terms gpee timetp, =0.2, where the linear entropy grows as a con-

the Wigner function the linear entropy is related to the ares€duence of diffusion effectas during the whole evolution
of its nonzero component in phase space. Due to the cognd also due to the disapearence of initial interference terms

pling to the environment the total area is not conserved, th at are washed away by the environment. As these vanish

Wigner function keeps spreading at all times leading to perboettgrr:]trog pég?;‘;t'?:agﬁi digr?;iii?;;svgﬁjl?; tsetig in the
manent growth of the entropy. plot. 9 ¢

Figure 6 shows the time-dependent linear entré rate oscillates for a short period of time. This is due to the
| tg dit ducti téboit P lod for the t d'f?w rotation of the Wigner function in phase space that makes the
po)_a_n_ ItS production ra §bo om plol for the two difler- - ;ntarference fringes temporarily parallel to tipeaxis and
ent initial conditions considered before, in a quench Wlth|eads to a slowdown of the decoherence pro¢sss Fig. 3
fixed environment temperature. o After t., the entropy rate starts growing again as the system
In the case of the double-Gaussian initial statelid in®)  gets rid of the induced interference terms. Finallygt the
there is an initial period of evolution up to the first decoher—entropy rate decreases to a low, slow decaying value driven
by diffusion only.

r'(t) 25 ' ' ' ' ' _ The single-Gaussian evolutigdashed Iin¢co'nfirms this
ol A ] picture. From a low initial valuéthe initial state is free from
A negative termsthe entropy production rate grows as the
151 ’ 5‘ (b ] quench generates ilnterferencgs. Later,. the environment
P o cleans them out leading to the f|r)al dgcaylng rate. .
"N NI N N ] We should stress that a growing linear entropy function
L N does not imply classicalitgpositivity of the Wigner function
05 | ; tp N /\\\ ______________ j is an extra necessary condition in order to have a classical
%( h) jg o probability distribution. Increase of§, tells us that the pure
o W Mo ; ; - initial quantum state is evolving into a mixed state. It does
0 5 10 15 20 25 " 30 not of course, tell us whether this mixed state is a classical or

quantum one. In particular this is the case between the
FIG. 5. Evolution ofl' when the potential changes its frequency quench time and the second decoherence time. During this
from Q3=1——1 for one Gaussian initially centred a=0 (\  period quantum effects are reintroduced while the linear en-
=0.1). A changing in the environment temperature is consideredropy is still growing (faster even since its production rate
D=0.3-0.1in(a) andD=0.3—-0.003 in(b). increasep
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VI. FINAL REMARKS 1

We have shown, using an exact numerical evaluation of 08|
the Wigner function that quantum effects can be reintroduced I'(t) &
after decoherence in several systems with explicit time de- 06 |
pendence. These quantum effects are originated when the
changing dynamics introduce instabilities in previously 04t tp
stable regions of the phase space. When this happens the
dynamics of the Wigner function becomes more relevant 027
than the decoherence effects due to the environitaent the
lowest the final bath temperature the more dominant these 0 s 10 15 20 25 a0

arg. The system then displays quantum behavior for a length

of time until the environment manages to catch up and force

clas§|callzat|0n once again. =2 (t=0) in ax>0 single-welled potentigland an infinite wall at
Smce all examples so far were based on systems d§<'=0). We foundt, = 0.8 andt,=7.4 (©2=—1 andD=0.01).

scribed by a double-well potential one could wonder whether

our results could be a consequence of possible tunneling phéponding time scales being in good agreement with the ana-

nomena between the two minima. Tunneling is possible belytical estimates. . _ -

tween Symmetry re|ated eigenstates W|th energy be'ow the Our I’e_SU|tS Open up Several |nterest|ng p_OSSIbIlItIes. The

barrier. The tunneling time scale for each pair is well knownMoSt obvious one would be to try to “maximize” the recov-

to be inversely proportional to the energy splitting of the €MiNg of quantum effects to the extent of making them effec-

symmetry related pair of eigenstates. For the parameters §€ly permanent. An oscillatory frequen¢g1] that would
our system Q2=1, A=0.1,% =1) only seven pairs of states continuously force instabilities into the system could prevent
are found below the barrier. Their energy splittings r(,jmg(;‘p_Ia55|callzat|on or at least postpone it for a great length of

from AEy~10"%2 to AE;~102, and thus the tunnelling M€ 3 _
would first be expected after100. Therefore and consid- !N terms of the specific case of the dynamics of a second-
ering the time scales in which our simulations take placeCrder phase transition one could expect quantum effects to be
tunneling should play no role. The stretching and folding ofPresent. Though the ”?0‘?'6' used is a (_:r_ude simplification of
the Wigner function responsible for the observed effects hap/at happens in a realistic phase transition, the same features
pens on both “sides” of the potential well independently of time-dependent introduction of nonlinearities would be
This is in agreement with the conclusion invariably found inPrésent in that case, leading to similar, probably stronger

the literature(see for example Ref10]) that tunneling takes quantum effects. Cr.it.ical prop_erties of infinite dimensi.onal
place rather slowly when compared with all natural timeSYStems such as critical slowing down could play an inter-

scales in the system. esting role in the process.

In order to confirm directly that tunneling phenomena are
not responsible for the effects observed, we solved numeri-
cally the problem of a single-Gaussian packet cantered at We would like to thank S. Habib, F. D. Mazzitelli, and J.
Xo=2 evolving in the usual quartic potential but with its P. Paz for comments and useful discussions. The work of
motion restricted tax>0. The resulting" is shown in Fig. 7. N.D.A. was supported by PPARC and F.C.L. was supported
As before quantum behavior is swiftly recovered, the correby CONICET and FundacioAntorchas.

FIG. 7. Evolution for a single-Gaussian packet canteredjat
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