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Quantum effects after decoherence in a quenched phase transition
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We study a quantum mechanical toy model that mimics some features of a quenched phase transition. Both
by virtue of a time-dependent Hamiltonian or by changing the temperature of the bath we are able to show that
even after classicalization has been reached, the system may display quantum behavior again. We explain this
behavior in terms of simple nonlinear analysis and estimate relevant time scales that match the results of
numerical simulations of the master equation. This opens new possibilities both in the study of quantum effects
in nonequilibrium phase transitions and in general time-dependent problems where quantum effects may be
relevant even after decoherence has been completed.
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I. INTRODUCTION

The emergence of classical behavior in quantum syst
is a topic of great interest for both conceptual and exp
mental reasons@1#. It is well established by now that th
interaction between a quantum system and an external e
ronment can lead to its classicalization; decoherence and
occurrence of classical correlations being the main featu
of this process~for a recent overview see@2#!.

A seemingly unrelated physical problem where the int
action between a main system and its surrounding envi
ment is central in determining the dynamics of a phase tr
sition. Usually, a change in the properties of the system
the bath, forces the system to change phase via an
equilibrium evolution. It is natural to ask what role decoh
ence plays in the phase transition and conversely, how
time-dependent nature of the process affects the classica
tion of the system.

In this paper we explore two concurrent avenues. We lo
at what may happen with the decoherence process whe
have a time-dependent setting~so far this problem has bee
mostly studied in kicked or driven systems; see for exam
Refs. @3# and @4#!. This is a very general question, and w
use this to guide us a simple toy model that naturally
cludes time-dependent features. This model also happen
mimic some properties of a nonequilibrium second-or
phase transition, giving us some clues as to what may hap
in a realistic case.

The paper is organized as follows. In the next section
introduce our model and review the physical role of the d
ferent terms in the relevant evolution equations. We desc
how the ‘‘phase transition’’ is implemented and discuss e
mates for the different time-scales involved. In Sec. III w
present the results of a series of numerical simulations for
evolution of an initial configuration of two delocalize
Gaussian wave packets. This system is subject to a su
quench via an instantaneous change in the frequency s
Both the cases where the temperature of the environme
kept fixed and allowed to change at the quench time
studied. We support the numerical results with a deta
1063-651X/2001/64~6!/066118~6!/$20.00 64 0661
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analytical analysis. Section IV contains similar results t
time taking as initial condition a single-Gaussian state c
tered at the global minimum. In Sec. V we discuss the tim
dependent evolution of the linear entropy in the model, illu
trating the loss of purity of the system and clarifying th
physical nature of the results previously obtained. Section
contains final remarks and the main conclusions of the pa

II. THE MODEL

We will start by considering a quantum anharmonic osc
lator coupled to an environment composed of an infinite
of harmonic oscillators. The total classical action for the s
tem is given by

S@x,qn#5S@x#1S@qn#1Sint@x,qn#

5E
0

t

dsF1

2
M F ẋ22V0

2~ t !x22
l

4
x4G

1(
n

1

2
mn~ q̇n

22vn
2qn

2!G2(
n

Cnxqn , ~1!

wherex and qn are the coordinates of the particle and t
oscillators respectively. The quantum anharmonic oscilla
is coupled linearly to each oscillator in the bath with streng
Cn . This coupling leads to a simple quantum Brownian m
tion model commonly used in the study of the quantum-
classical transition@5,6#. Tracing over the degrees of free
dom of the environment one obtains a master equation
the reduced density matrix of the system. From this one
derive the following evolution equation for the correspon
ing Wigner function@2#:

Ẇr~x,p,t !5$Hsyst,Wr%PB2
l

4
x]ppp

3 Wr12g~ t !]p~pWr!

1D~ t !]pp
2 Wr2 f ~ t !]px

2 Wr , ~2!

where
©2001 The American Physical Society18-1
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g~ t !52
1

2MV0
E

0

t

dt8sinh~V0t8!h~ t8!,

D~ t !5E
0

t

dt8cosh~V0t8!n~ t8!, ~3!

f ~ t !52
1

MV0
E

0

t

dt8sinh~V0t8!h~ t8!,

g(t) is the dissipation coefficient,D(t) and f (t) are the dif-
fusion coefficients,h(t) andn(t), the dissipation and nois
kernels, are given respectively by

h~ t !5E
0

`

dvI ~v!sinvt,

n~ t !5E
0

`

dvI ~v!coth
bv

2
cosvt,

whereI (v) is the spectral density of the environment.
The first term on the right-hand side of Eq.~2! is the

Poisson bracket, corresponding to the usual classical ev
tion. The second term includes the quantum correction~we
have set\51). The last three terms describe dissipation a
diffusion effects due to coupling to the environment. In ord
to simplify the problem, we consider a high-temperatu
ohmic @ I (v);v# environment. In this approximation th
coefficients in Eq.~2! become constants:g(t)5g0 , f ;1/T,
and D52g0kBT. The normal diffusion coefficientD is the
term responsible for decoherence effects and at high t
peratures is much larger thang0 and f. Therefore in Eq.~2!,
we may neglect the dissipation and the anomalous diffus
terms against the normal diffusion. It is important to no
that the high-temperature approximation is well defined o
after a time scale of the order of 1/(kBT);g0 /D ~with \
51). The relevant period of evolution for our systems tak
place at times comfortably larger than this time scale, sa
in the validity regime of the approximation.

Time dependence will be introduced in the Hamiltoni
by imposing a sudden change of sign ofV0

2 ~typical quench!.
This mass term is taken to be positive initially, the origin
symmetry being broken byV2 becoming negative. On a sec
ond stage we will also consider the case where the temp
ture of the environmentT changes with time. The change
the potential leads to the formation of degenerate min
mimicking the breaking of symmetry in a second-ord
phase transition. In a realistic model one should address
problem in the context of quantum field theory@7#. This is an
extremely difficult problem since nonperturbative and no
Gaussian effects are relevant in the dynamical evolution
the order parameter undergoing the transition and clearly
merical simulations are out of the question. We trust that
nontrivial type of behavior that may be a feature of o
simple quantum mechanical model will also be present~and
likely more strongly so! in the infinite dimensional case.
06611
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III. DELOCALIZED INITIAL STATES: QUANTUM
EFFECTS AFTER DECOHERENCE

We solve Eq.~2! numerically using a fourth-order spectr
algorithm ~numerical checks included carrying out simul
tions at different spatial and temporal resolutions!. We chose
l50.1, D50.3, and setV0

251.0 initially. In order to under-
stand the effects of the change in the mass term on the
coherence process we look first at the evolution of the qu
tum superposition of two Gaussian wave packets

C~x,t50!5C1~x!1C2~x!, ~4!

where

C1,2~x!5N~ t !expF2
~x7L0!2

2d2 G exp~6 iP0x!. ~5!

The initial Wr consists of two Gaussian peaksWr
1,2 separated

by a distance 2L0 ~we choseL052.0 andP050) and an
interference termWr

int . This quantum initial state has bee
widely used in the literature to illustrate decoherence p
nomena~see@2# or @6# for example! and its evolution will
make clear the physical nature of the effects we will obser
In the next section we will choose a more realistic init
condition in terms of the dynamics of a phase transition.

In order to visualize deviations from classicality effe
tively, we define the auxiliary quantity@8#,

G~ t !5E dxdp@ uWru2Wr#. ~6!

When the Wigner distribution is positive and possibly ide
tifiable with a classical probability distribution,G is zero.
However, ifG is positiveWr must have negative values du
to quantum interference terms. We can thus use positivity
the G function as sufficient condition for nonclassic
behavior.

A. Mass quench at constant temperature

We start the simulation by evolvingWr for some time
with the positive mass squared potential, in the presenc
the bath. During this period, the initial quantum interferen
terms are quickly damped by the environment. Thus, for
early timetD1

, the system decoheres and one is able to d
tinguish two classical probability distributions correspondi
to the two initial Gaussian peaks evolving over phase spa
Suddenly, att5tc we change the frequency of the syste
from the initial positive valueV0

2 to a final2V0
2. The evo-

lution picture changes dramatically when the frequency
comes negative and instabilities are introduced in the syst
In Fig. 1 we can see the behavior ofG. Starting from a large
initial value,G quickly tends to zero as quantum interferen
terms vanish and the system becomes classical. The pote
is quenched attc and shortly after the system displays on
again quantum behavior for a period of time.

In order to understand this process we go back to e
times, before the quench. Fromt50 up tot5tc the diffusion
coefficient D causes the system to decohere, destroy
8-2
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QUANTUM EFFECTS AFTER DECOHERENCE IN A . . . PHYSICAL REVIEW E64 066118
quantum interference terms in a time that can be estimate
be of the order oftD1

;1/(4L0
2D), where 2L0 is the initial

space separation between the peaks of the Gaussian
packets~see @2#!. The normal diffusion term is dominan
with respect to the quantum corrections, and thereafter
evolution is given essentially by the classical Fokker-Plan
flow. For our choice of initial conditions we havetD1

;0.2.
This is roughly the time quantum interference terms in
Wigner function should fall to 1/e of their initial value~we
have checked that this is compatible with the decay ofG in
the initial period of evolution in our simulations!. As soon as
the frequency becomes negative, an unstable point form
the center of the phase space with associated stable an
stable directions. These are characterized by Lyapunov c
ficientsL with negative and positive real parts respective
@9#.

This type of dynamics gives rise to the possibility
squeezing along the stable direction. The exponential stre
ing of the Gaussian packets in one of the directions due
the hyperbolic point is compensated by an exponen
squeezing. This will lead to a growth of gradients in t
Wigner function that will make the quantum term in Eq.~2!
comparable to the others. As a consequence the system
be forced to explore the quantum regime again. In a m
quantitative fashion we have that the time dependence o
package width in the direction of the momenta after
quench is given bysp(t)5sp(tc)exp@2L(t2tc)#, where
sp(tc) is the corresponding width at the time in whichV0
changes sign. From this we can estimate thep derivatives of
the Wigner function to grow as]p

nWr}sp
2n(tc)exp@nL(t

2tc)#Wr . Clearly higher-order derivatives grow faster and
some point the quantum term with its third-order derivat
will be of comparable magnitude to the classical terms in
Poisson brackets~which are first order!. This will happen
~see@9#! when the ratio]p

3Wr /]pWr becomes of the order o
x25]xV(x)/]x

3V(x);V0
2/l that characterizes the scale

nonlinear terms. From this the time at which quantum effe
become relevant is estimated to be

tx;tc1L21ln@xsp~ tc!#. ~7!

In the simulation used in our example we chosetc52.5 ~later
than the time when the Wigner function becomes defin

FIG. 1. Evolution ofG when the potential changes its frequen
from V0

251→21, D50.3, andl50.1.
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positive!. We evaluatex;3.2 and numerically estimate
sp(tc);2.7. We also assume the Lyapunov coefficient to
given by the value corresponding to a linear potentialL
52V0

252.0. Therefore, the time in which quantum effec
start being relevant is given bytx;3.8. This is in good
agreement with the time at which the Wigner function d
plays negative values once again, as can be seen in Fig

From this point onwards quantum contributions increa
their growth being limited by diffusion effects that limit th
squeezing of the Wigner function. The bound on the width
the packs is given bysc5A2D/L @2,9#. We use this to es-
timate the second decoherence time scale. We assume
quantum effects become maximal at a certaintmax ~when in
the numerical simulationG reaches its maximum! with a
corresponding pack widthsp(tmax) and that decoherence i
effective after the time when squeezing becomes of the o
of the limiting value. This implies

tD2
5tmax1L21ln@sp~ tmax!/sc#, ~8!

which defines the decoherence time after the critical tim
Using sp(tmax);4 andsc50.5 we obtaintD2

;6.3, in rea-
sonable agreement with the simulation time for which qu
tum effects are exponentially suppressed~see Fig. 1!.

B. Mass quench with changing temperature

The pattern of classical-quantum-classical behavior fou
in the above system with explicit time dependence is
served in more generic situations. As a second example
have solved Eq.~2! allowing the bath temperature to de
crease simultaneously with the change in sign of the
quency term. These conditions take us somehow close
what would happen in a true second-order phase trans
caused by a temperature quench. As a consequence, th
fusion coefficient, proportional toT, goes attc from an initial
high-temperature valueD0 up to a final lower valueD f @still
in the high-temperature regime in order to ensure the valid
of Eq. ~2!#. In Fig. 2 we see the effect of changing the tem
perature with the classical potential~except forD all simu-
lations parameters are the same as in Fig. 1!. The analysis
used in the previous example can be easily reproduced
this case. Both the initial decoherence timetD1

and the time

FIG. 2. Evolution ofG when the potential changes its frequen
from V0

251→21. A changing in the environment temperature
consideredD50.3→0.1 in curve~a! andD50.3→0.003 in~b!.
8-3



f

ly

u

ak
om
es
bl
e

id
ti

th
lys
a

ar

o
ea
th

n

a
g
ti

ce
ia
m
ur
e

tia
th

tu

t

cy
ur

ce
he

ur
tum

to-
s a
sys-
the
lated

of
eu-

r the
tive

ANTUNES, LOMBARDO, AND MONTEOLIVA PHYSICAL REVIEW E 64 066118
for the reintroduction of the quantum fluctuationstx remain
unchanged as they do not depend on the temperature o
environment. The second decoherence timetD2

is larger for a

weaker diffusion term@we have usedD f50.1 in Fig. 2~a!
andD f50.003 in Fig. 2~b!#. We have obtained respective
tD2a

;6.5. andtD2b
;7.4. In the lowest-temperature case@Fig.

2~b!# the analytical prediction matches the numerical res
poorly.

This is due to the fact that the estimation does not t
into account the oscillations in the rate of decoherence c
ing from different orientations of the interference fring
when the Wigner function is moving around the unsta
point. As the diffusion coefficient is smaller, the second d
coherence time grows and the approximation of the ups
down potential is no longer valid. In any case, the analy
result can still be used as an estimated lower limit for
second decoherence time. We have included it in our ana
in order to emphasize how dramatic the quantum effects
during the quenched transition.

It is helpful to look at the Wigner function directly in
order to further clarify, which regions of phase space
responsible for turningG positive. In Figs. 3 we show
W(x,p,t) for the quench case corresponding to Fig. 2~a!.

The four plots in the left column correspond to the dec
herence period before the quench. The two Gaussian p
~light spots! rotate in phase space around the minimum of
potential while the negative components~dark patches! of
the Wigner function are cleared away by the environme
When the potential changes~right column! the wave packets
start spreading and exploring the nonlinear regions of ph
space giving rise to the dark interference patches. For lon
times decoherence takes over again and the Wigner func
becomes once more positively defined.

IV. SINGLE INITIAL GAUSSIAN STATE

As a further example we take a single-Gaussian state
tered at the global minimum of the quartic potential as init
condition. This is a more reasonable initial condition in ter
of a realistic phase transition, mimicking a high-temperat
thermal distribution. It will also allow us to see that th
above results are not an artifact of the initial state. This ini
Wigner function is already classical and so we ignore
initial evolution period and taketc50. Figure 4 and Fig. 5
show theG function for the same quenches as before~with-
out and with temperature change respectively!. The initial
classical configuration (G50, for the initial time! develops
quantum effects as the classical potential and the tempera
change. The relevant time scales are evaluated as before
once again, the estimates are in good agreement with
simulation results. In the constant temperature casesp(tc
50);0.7, which givestx;0.6 ~see Fig. 4!. We also have
sp(tmax);3.2. andsc;0.5 leading totD;3.2, which agrees
with the numerical result.

Figure 5 shows the cases where the change in frequen
followed by a change in the environmental temperat
~same coefficients as in the example of Fig. 2!. For Fig. 5~a!
sp(tmax);3.3 andsc50.3, and therefore the decoheren
time is tD;3.5. This scale is in good agreement with t
06611
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numerical result. The estimation for Fig. 5~b! gives a deco-
herence timetD;4.5 that again@as in the case of Fig. 2~b!#
fails to fit the numerical result. We have included it in o
analysis in order to emphasize how dramatic the quan
effects are during the quenched transition.

V. LINEAR ENTROPY

One of the most salient features of the quantum-
classical transition concerns the production of entropy a
consequence of the entangling interactions between the
tem and the environment. In order to clarify the nature of
postdecoherence quantum effects in the systems simu
above we have looked at the corresponding time evolution
the linear entropy that sets a lower bound on the von N

FIG. 3. Stroboscopic phase space for the evolution in Fig. 2~a!.
Horizontal axis corresponds tox, vertical axis top. The medium
gray shade on the background corresponds to zero values fo
Wigner function, lighter and darker shades, respectively, to posi
and negative values ofW(x,p).
8-4
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QUANTUM EFFECTS AFTER DECOHERENCE IN A . . . PHYSICAL REVIEW E64 066118
mann entropy~see@4#!. This is given in terms of the densit
matrix by

Sl~ t !52 ln$Tr@r2~ t !#%. ~9!

This quantity can be easily obtained from the Wign
function giving a good measurement of the ‘‘loss of purit
of the system as it interacts with the bath~see @2,4#!. We
found that as expected the entropy increases throughou
whole evolution. The system starts as a pure state and w
interacting with the heat bath it loses coherence and sim
taneously starts behaving as a classical ensemble. Whe
potential changes it evolves for sometime as a quan
mixed system but the original ‘‘purity’’ is never recovered.
this sense the decoherence process is irreversible. In term
the Wigner function the linear entropy is related to the a
of its nonzero component in phase space. Due to the c
pling to the environment the total area is not conserved,
Wigner function keeps spreading at all times leading to p
manent growth of the entropy.

Figure 6 shows the time-dependent linear entropy~top
plot! and its production rate~bottom plot! for the two differ-
ent initial conditions considered before, in a quench w
fixed environment temperature.

In the case of the double-Gaussian initial state~solid line!
there is an initial period of evolution up to the first decoh

FIG. 4. Evolution ofG when the potential changes its frequen
from V0

251→21 for one Gaussian initially centered atx50 (l
50.1).

FIG. 5. Evolution ofG when the potential changes its frequen
from V0

251→21 for one Gaussian initially centred atx50 (l
50.1). A changing in the environment temperature is conside
D50.3→0.1 in ~a! andD50.3→0.003 in~b!.
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ence timetD1
50.2, where the linear entropy grows as a co

sequence of diffusion effects~as during the whole evolution!
and also due to the disapearence of initial interference te
that are washed away by the environment. As these va
the entropy production rate decreases as can be seen i
bottom plot. Before reaching its minimal value att5tc the
rate oscillates for a short period of time. This is due to t
rotation of the Wigner function in phase space that makes
interference fringes temporarily parallel to thep axis and
leads to a slowdown of the decoherence process~see Fig. 3!.
After tc , the entropy rate starts growing again as the sys
gets rid of the induced interference terms. Finally attD2

, the
entropy rate decreases to a low, slow decaying value dri
by diffusion only.

The single-Gaussian evolution~dashed line! confirms this
picture. From a low initial value~the initial state is free from
negative terms! the entropy production rate grows as th
quench generates interferences. Later, the environm
cleans them out leading to the final decaying rate.

We should stress that a growing linear entropy funct
does not imply classicality~positivity of the Wigner function
is an extra necessary condition in order to have a class
probability distribution!. Increase ofSl tells us that the pure
initial quantum state is evolving into a mixed state. It do
not of course, tell us whether this mixed state is a classica
quantum one. In particular this is the case between
quench time and the second decoherence time. During
period quantum effects are reintroduced while the linear
tropy is still growing ~faster even since its production ra
increases!.
d

FIG. 6. In the top figure, we show the linear entropy for t
delocalized~solid line! and single-Gaussian~dashed line! initial
states. In the bottom figure, we have the entropy production rat
time for the same initial conditions~solid and dashed lines a
above!.
8-5
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VI. FINAL REMARKS

We have shown, using an exact numerical evaluation
the Wigner function that quantum effects can be reintrodu
after decoherence in several systems with explicit time
pendence. These quantum effects are originated when
changing dynamics introduce instabilities in previous
stable regions of the phase space. When this happens
dynamics of the Wigner function becomes more relev
than the decoherence effects due to the environment~and the
lowest the final bath temperature the more dominant th
are!. The system then displays quantum behavior for a len
of time until the environment manages to catch up and fo
classicalization once again.

Since all examples so far were based on systems
scribed by a double-well potential one could wonder whet
our results could be a consequence of possible tunneling
nomena between the two minima. Tunneling is possible
tween symmetry related eigenstates with energy below
barrier. The tunneling time scale for each pair is well kno
to be inversely proportional to the energy splitting of t
symmetry related pair of eigenstates. For the parameter
our system (V251, l50.1, \51) only seven pairs of state
are found below the barrier. Their energy splittings ran
from DE0;10212 to DE7;1022, and thus the tunnelling
would first be expected aftert;100. Therefore and consid
ering the time scales in which our simulations take pla
tunneling should play no role. The stretching and folding
the Wigner function responsible for the observed effects h
pens on both ‘‘sides’’ of the potential well independent
This is in agreement with the conclusion invariably found
the literature~see for example Ref.@10#! that tunneling takes
place rather slowly when compared with all natural tim
scales in the system.

In order to confirm directly that tunneling phenomena a
not responsible for the effects observed, we solved num
cally the problem of a single-Gaussian packet cantered
x052 evolving in the usual quartic potential but with i
motion restricted tox.0. The resultingG is shown in Fig. 7.
As before quantum behavior is swiftly recovered, the cor
b
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sponding time scales being in good agreement with the a
lytical estimates.

Our results open up several interesting possibilities. T
most obvious one would be to try to ‘‘maximize’’ the recov
ering of quantum effects to the extent of making them eff
tively permanent. An oscillatory frequency@11# that would
continuously force instabilities into the system could prev
classicalization or at least postpone it for a great length
time.

In terms of the specific case of the dynamics of a seco
order phase transition one could expect quantum effects t
present. Though the model used is a crude simplification
what happens in a realistic phase transition, the same fea
of time-dependent introduction of nonlinearities would
present in that case, leading to similar, probably stron
quantum effects. Critical properties of infinite dimension
systems such as critical slowing down could play an int
esting role in the process.

ACKNOWLEDGMENTS

We would like to thank S. Habib, F. D. Mazzitelli, and
P. Paz for comments and useful discussions. The work
N.D.A. was supported by PPARC and F.C.L. was suppor
by CONICET and Fundacio´n Antorchas.

FIG. 7. Evolution for a single-Gaussian packet cantered atx0

52 (t50) in ax.0 single-welled potential~and an infinite wall at
x50). We foundtx50.8 andtD57.4 (V0

2521 andD50.01).
s.

B.

s.
i,
@1# C. Monroeet al., Science272, 1131~1996!; C. J. Myatt,et al.,
Nature~London! 403, 269 ~2000!; M. Bruneet al., Phys. Rev.
Lett. 77, 4887 ~1996!; A. Rauschenbeutelet al., Science288,
2024 ~2000!; J. R. Friedmanet al., Nature~London! 406, 43
~2000!; C. H. van del Walet al., Science290, 773 ~2000!; C.
Tesche,ibid. 290, 720 ~2000!.

@2# J. P. Paz and W. H. Zurek, inCoherent Matter Waves, Lectures
from the 72nd Les Houches Summer School, 1999, edited
R. Kaiser, C. Westbrook, and F. David~Springer Verlag, Ber-
lin, 2001!, pp. 533–614.

@3# T. Bhattacharya, S. Habib, and K. Jacobs, Phys. Rev. Lett.85,
4852 ~2000!, and references therein.

@4# D. Monteoliva and J. P. Paz, Phys. Rev. Lett.85, 3373~2000!;
e-print quant-ph/0106090.

@5# B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D47, 1576
y

~1993!.
@6# J. P. Paz, S. Habib, and W. H. Zurek, Phys. Rev. D47, 488

~1993!.
@7# F. C. Lombardo, F. D. Mazzitelli, and D. Monteoliva, Phy

Rev. D 62, 045016~2000!; F. C. Lombardo, F. D. Mazzitelli,
and R. J. Rivers, e-print hep-ph/0102152.

@8# S. Habib, K. Jacobs, H. Mabuchi, R. Ryne, K. Shizume, and
Sundaram, e-print quant-ph/0010093.

@9# W. H. Zurek and J. P. Paz, Phys. Rev. Lett.72, 2508~1994!.
@10# W. A. Lin and L. E. Ballentine, Phys. Rev. A45, 3637~1992!;

R. Utermann, T. Dittrich, and P. Haenggi, Phys. Rev. E49, 273
~1994!; T. Dittrich, B. Oelschlaegel, and P. Haenggi, Europhy
Lett. 22, 5 ~1993!; S. Kohler, R. Utermann, and P. Haengg
Phys. Rev. E58, 7219~1998!.

@11# N. D. Antunes, F. C. Lombardo, and D. Monteoliva~unpub-
lished!.
8-6


